fastdev.geom.warp_meshes ======================== .. py:module:: fastdev.geom.warp_meshes Module Contents --------------- .. py:class:: WarpMeshes(warp_meshes: List[warp.Mesh], warp_meshes_first_idx: jaxtyping.Int[torch.Tensor, num_scenes]) A lightweight wrapper for batched warp meshes. .. py:method:: from_files(filenames: List[str], filenames_first_idx: jaxtyping.Int[torch.Tensor, num_scenes], device: Device = 'cpu') :staticmethod: .. py:method:: from_trimesh_meshes(meshes: List[trimesh.Trimesh], meshes_first_idx: jaxtyping.Int[torch.Tensor, num_scenes], device: Device = 'cpu') -> WarpMeshes :staticmethod: .. py:property:: num_scenes :type: int .. py:property:: num_meshes :type: int .. py:method:: query_signed_distances(query_points: jaxtyping.Float[torch.Tensor, num_points 3], query_points_first_idx: jaxtyping.Int[torch.Tensor, num_scenes], mesh_poses: Optional[jaxtyping.Float[torch.Tensor, num_meshes 4 4]] = None, mesh_scales: Optional[jaxtyping.Float[torch.Tensor, num_meshes]] = None, max_dist: float = 1000000.0) -> Tuple[jaxtyping.Float[torch.Tensor, num_points], jaxtyping.Float[torch.Tensor, num_points 3], jaxtyping.Float[torch.Tensor, num_points 3]] Query signed distances. :returns: differentiable signed distances (num_points). torch.Tensor: normals (num_points, 3). torch.Tensor: closest points (num_points, 3). :rtype: torch.Tensor .. py:method:: __repr__() -> str .. py:method:: __str__() -> str