fastdev.nn.spconv_unet ====================== .. py:module:: fastdev.nn.spconv_unet .. autoapi-nested-parse:: SparseUNet Driven by SpConv. Adapted from: https://github.com/Pointcept/Pointcept This module requires the installation of the following packages: - spconv: https://github.com/traveller59/spconv?tab=readme-ov-file#spconv-spatially-sparse-convolution-library Original Author: Xiaoyang Wu (xiaoyang.wu.cs@gmail.com) Please cite their work if you use the following code in your research paper. Module Contents --------------- .. py:class:: SpUNetBase(in_channels: int, num_classes: int, base_channels=32, channels=(32, 64, 128, 256, 256, 128, 96, 96), layers=(2, 3, 4, 6, 2, 2, 2, 2), cls_mode=False) Bases: :py:obj:`torch.nn.Module` .. py:attribute:: in_channels .. py:attribute:: num_classes .. py:attribute:: base_channels :value: 32 .. py:attribute:: channels :value: (32, 64, 128, 256, 256, 128, 96, 96) .. py:attribute:: layers :value: (2, 3, 4, 6, 2, 2, 2, 2) .. py:attribute:: num_stages .. py:attribute:: cls_mode :value: False .. py:attribute:: conv_input .. py:attribute:: down .. py:attribute:: up .. py:attribute:: enc .. py:attribute:: dec .. py:attribute:: final .. py:method:: forward(points: torch.Tensor) .. py:class:: SpUNetCls(in_channels: int, num_classes: int, base_channels=32, channels=(32, 64, 128, 256, 256, 128, 96, 96), layers=(2, 3, 4, 6, 2, 2, 2, 2)) Bases: :py:obj:`torch.nn.Module` .. py:attribute:: model .. py:method:: forward(points: torch.Tensor) .. py:class:: SpUNetSeg(in_channels: int, num_classes: int, base_channels=32, channels=(32, 64, 128, 256, 256, 128, 96, 96), layers=(2, 3, 4, 6, 2, 2, 2, 2)) Bases: :py:obj:`torch.nn.Module` .. py:attribute:: model .. py:method:: forward(points: torch.Tensor)