fastdev.datasets.s3dis¶
Module Contents¶
- fastdev.datasets.s3dis.collect_point_label(anno_path, out_filename, class_names_path, file_format='txt')[source]¶
- Convert original dataset files to data_label file (each line is XYZRGBL).
We aggregated all the points from each instance in the room.
- Parameters:
anno_path – path to annotations. e.g. Area_1/office_2/Annotations/
out_filename – path to save collected points and labels (each line is XYZRGBL)
file_format – txt or numpy, determines what file format to save.
- Returns:
None
Note
the points are shifted before save, the most negative point is now at origin.
- fastdev.datasets.s3dis.sample_points(points: numpy.ndarray, labels: numpy.ndarray, room_coord_max: numpy.ndarray, num_points: int = 4096, block_size: float = 1.0)[source]¶
- Parameters:
points (numpy.ndarray)
labels (numpy.ndarray)
room_coord_max (numpy.ndarray)
num_points (int)
block_size (float)
- class fastdev.datasets.s3dis.S3DISDataset(config: S3DISDatasetConfig, split: Literal['train', 'test'] = 'train')[source]¶
Bases:
torch.utils.data.Dataset
S3DIS dataset.
- Parameters:
config (S3DISDatasetConfig)
split (Literal['train', 'test'])