fastdev.nn.spconv_unet

SparseUNet Driven by SpConv.

Adapted from: https://github.com/Pointcept/Pointcept

This module requires the installation of the following packages:

Original Author: Xiaoyang Wu (xiaoyang.wu.cs@gmail.com) Please cite their work if you use the following code in your research paper.

Module Contents

class fastdev.nn.spconv_unet.SpUNetBase(in_channels: int, num_classes: int, base_channels=32, channels=(32, 64, 128, 256, 256, 128, 96, 96), layers=(2, 3, 4, 6, 2, 2, 2, 2), cls_mode=False)[source]

Bases: torch.nn.Module

Parameters:
  • in_channels (int)

  • num_classes (int)

in_channels[source]
num_classes[source]
base_channels = 32[source]
channels = (32, 64, 128, 256, 256, 128, 96, 96)[source]
layers = (2, 3, 4, 6, 2, 2, 2, 2)[source]
num_stages[source]
cls_mode = False[source]
conv_input[source]
down[source]
up[source]
enc[source]
dec[source]
final[source]
forward(points: torch.Tensor)[source]
Parameters:

points (torch.Tensor)

class fastdev.nn.spconv_unet.SpUNetCls(in_channels: int, num_classes: int, base_channels=32, channels=(32, 64, 128, 256, 256, 128, 96, 96), layers=(2, 3, 4, 6, 2, 2, 2, 2))[source]

Bases: torch.nn.Module

Parameters:
  • in_channels (int)

  • num_classes (int)

model[source]
forward(points: torch.Tensor)[source]
Parameters:

points (torch.Tensor)

class fastdev.nn.spconv_unet.SpUNetSeg(in_channels: int, num_classes: int, base_channels=32, channels=(32, 64, 128, 256, 256, 128, 96, 96), layers=(2, 3, 4, 6, 2, 2, 2, 2))[source]

Bases: torch.nn.Module

Parameters:
  • in_channels (int)

  • num_classes (int)

model[source]
forward(points: torch.Tensor)[source]
Parameters:

points (torch.Tensor)